

An Evolving Understanding of the Hosston Layer of the Trinity Aquifer

Michael Keester, P.G.

Presentation at the Bell County Water Symposium

November 16, 2015

Hosston (Lower Trinity)

What did we know

What did we learn

What is the difference

What does it mean

What Did We Know?

- Used for many years
- Pre-development water levels above land surface
- Water levels steadily declining
- Fresh to brackish water
- Sands typically coarser with depth
- Aquifer is deeper and thicker toward the east

Measured Water Leve

Cross-Sections

22

Sources: Kelley, V. A. et al., 2013, Conceptual Model Report - Updated Groundwater Availability Model of the Northern Trinity and Woodbine Aquifers, Austin: INTERA. R.W. Harden & Associates, I. et al., 2004. Northern Trinity / Woodbine Aquifer Groundwater Availability Model, Austin: Texas Water Development Board.

Conceptual Model Transmissivity

- Data from the NTWGAM Conceptual Model Geodatabase
- Locations are aquifer transmissivity estimates (gpd/ft)
- Generally increasing to the east

Source: Modified from Figure 4.2.31 in Kelley, V. A. et al., 2013, Conceptual Model Report - Updated Groundwater Availability Model of the Northern Trinity and Woodbine Aquifers, Austin: INTERA.

NTWGAM Calibrated Transmissivity

Transmissivity adjusted during model calibration

Values are typically less than the conceptual model

What Did We Learn?

- Relatively recent drilling and testing
- Information provided in CUWCD hydrogeologic reports
- For example:
 - District Well No. N2-13-002P
 - About 600 feet thick
 - Pea gravel at base
 - Very high transmissivity

Armstrong WSC Well #2 (N2-10-001P)

- Test conducted in August 2013
 Rate = 300 GPM
 - ♦ Drawdown = 15.5 ft
 - Transmissivity = 65,000 gpd/ft
 - ▲TDS = 1,030 mg/L

Source: Fleishhauer, Lou and George, Peter. A Hydrologic study of Armstrong WSC Well #2. May 26, 2014.

East Bell WSC #2 (N2-04-010P)

Test conducted in July 2011

- ▲ Rate = 750 GPM
- \diamond Drawdown = 2.8 ft
- Transmissivity = 140,000 gpd/ft

Source: East Bell Water Supply Corporation. Operating Permit Application submitted to CUWCD. September 21, 2011.

Jack Hilliard Materials (N2-13-002P)

Test conducted in October 2013 ▲ Rate = 600 GPM Δ Drawdown = 12.2 ft Transmissivity 240,000 gpd/ft (early) 118,000 gpd/ft (late) $\Delta TDS = 1,110 mg/L$

Source: Keester, Michael R. January 21, 2014. Hydrogeologic Report – District Well No: N2-13-002P, Lower Trinity Aquifer, Bell County, Texas. Letter Report, Round Rock, TX: Thornhill Group, Inc.

Doc Curb Well No. 1 (N2-14-004P)

CTWSC – Doc Curb Well No. 1 36-Hour Pumping Test – 4/6 to 4/7/2015 Cooper-Jacob Semi-Log Recovery

- Test conducted in April 2015
- ▲ Rate = 450 GPM
- ♦ Drawdown = 101.5 ft
- Transmissivity = 8,000 gpd/ft
- ▲TDS = 2,420 mg/L

Source: Ferry, Elizabeth May 22, 2015. Hydrogeologic Report – Doc Curb Well No. 1 Lower Trinity Aquifer, Central Texas Water Supply Corporation, Bell County, Texas. Letter Report, Round Rock, TX: Thornhill Group, Inc.

What is the Difference?

Eastern Bell County – Transmissivity similar between tests and model

Western Bell County - Transmissivity very different between pumping test results and model

Apparently better quality downdip and deeper than in some updip and shallower areas

Pumping Tests Compared to Conceptual Model

NTWGAM Calibrated Transmissivity Compared to Conceptual Model and Pumping Tests

LBG GUYTON

What Do the Differences Mean?

Models are used

- To assess effects of production
- To evaluate resource management options
- To quantify groundwater availability
- Differences raise questions regarding resource management
 - How might DFCs be different with the higher transmissivity?
 - How might existing users be affected differently?
- Created a modified model to evaluate

NTWGAM Modified Transmissivity Distribution Map

- Points reflect pumping test data
- Geostatistical interpolation designed to honor data point as closely as possible

Source: Keester, Michael and Konetchy. Results of Northern Trinity / Woodbine Groundwater Availability Model Simulations using a Modified Lower Trinity Transmissivity 16 Distribution. Technical Memo to CUWCD. February 5, 2016.

Percent Change from Unmodified Values

- Points reflect percent change at the location
- Calculated on a cell-by-cell basis as:

 $\frac{Modified - Original}{Original} \times 100$

Area outside circle is unchanged

Source: Keester, Michael and Konetchy. Results of Northern Trinity / Woodbine Groundwater Availability Model Simulations using a Modified Lower Trinity Transmissivity Distribution. Technical Memo to CUWCD. February 5, 2016.

Modeled Water Level Comparisons City of Holland Well (N2-02-049G)

Long-term trends similar
Unmodified GAM

- Short-term fluctuations greater than expected
- Suggest transmissivity is too low

Modified GAM

- Data suggest small shortterm fluctuations
- Later trend less than expected

Source: Keester, Michael and Konetchy. Results of Northern Trinity / Woodbine Groundwater Availability Model Simulations using a Modified Lower Trinity Transmissivity 18 Distribution. Technical Memo to CUWCD. February 5, 2016.

Comparison Table for Bell County

	Run 10 – Proposed DFC			Modified Run 10		
Aquifer	Average Drawdown	Above Top†	Above Base [‡]	Average Drawdown	Above Top [†]	Above Base [‡]
Paluxy	19 ft	92%	93%	16 ft	93%	94%
Glen Rose	83 ft	87%	93%	76 ft	88%	94%
Hensell	137 ft	89%	89%	121 ft	90%	90%
Hosston	330 ft	74%	79%	257 ft	80%	84%

[†]Percent of January 1, 2010 Water Level Above Top of Aquifer Remaining on December 31, 2070 [‡]Percent of January 1, 2010 Water Level Above Bottom of Aquifer Remaining on December 31, 2070

Source: Keester, Michael and Konetchy. Results of Northern Trinity / Woodbine Groundwater Availability Model Simulations using a Modified Lower Trinity Transmissivity 7 Distribution. Technical Memo to CUWCD. February 5, 2016.

Potential Additional Production

- At higher transmissivity, greater production may be possible with the same DFC
- CUWCD conducted several model simulations to assess effects of higher production
 - Up to 40,000 acre-feet per year across Bell and Williamson counties
 - 6 scenarios with 4 model configurations
 - All scenarios added to GMA 8 Run 10 pumping file (that is, proposed DFC)

Simulated Lower Trinity Drawdown Convertible GAM – Pumping 40,000 AFY

Unmodified Transmissivity

Modified Transmissivity

Lower Trinity Drawdown- Scenario D-006 - 50 Years

LBG GUYTON

Simulated Lower Trinity Remaining Artesian Head Convertible GAM – Pumping 40,000 AFY

Unmodified Transmissivity

Lower Trinity Artesian Head- Scenario C-006 - 50 Years

Modified Transmissivity

2 LBG GUYTON

Source: Keester, Michael and Konetchy. Potential Effects on Lower Trinity Aquifer Water Levels due to Proposed Groundwater Production Scenarios. Technical Memo 22 to CUWCD. July 11, 2016.

Modeled Effects on Armstrong WSC Well #2 Unmodified Transmissivity Convertible NTWGAM

Source: Keester, Michael and Konetchy. Potential Effects on Lower Trinity Aquifer Water Levels due to Proposed Groundwater Production Scenarios. Technical Memo 2 to CUWCD. July 11, 2016.

Modeled Effects on Armstrong WSC Well #2 Modified Transmissivity Convertible NTWGAM

Source: Keester, Michael and Konetchy. Potential Effects on Lower Trinity Aquifer Water Levels due to Proposed Groundwater Production Scenarios. Technical Memo 24 to CUWCD. July 11, 2016.

Conclusions

Lower Trinity transmissivity is greater than previous thought in eastern Bell County

Modifying the existing model shows a decrease in simulated effects from production

Similar regional effects regardless of pumping location

Potentially higher production possible with the same DFC

Questions

Michael Keester, P.G.

