# Understanding the Aquifers of Bell County for ASR

James Beach LBG-Guyton Associates A member of WSP

## **Conceptual ASR**



# **Conceptual ASR**



From Maliva/Missimer 2010

# **Conceptual ASR**



From Maliva/Missimer 2010

### Per Capita Surface Water Supply



### Reality Shifted... (and Still Shifting)



### Good Aquifer Characteristics for ASR

| Desire for ASR System                                                 | Aquifer Characteristic                                        |
|-----------------------------------------------------------------------|---------------------------------------------------------------|
| Should be easy to put water in and take it out                        | Reasonable transmissivity<br>productive wells                 |
| Want the aquifer to store sufficient volume in smallest area possible | Reasonable thickness and porosity                             |
| Want stored water to be there when you are ready to recover           | Low hydraulic gradient, low mixing                            |
| Want the water quality to be satisfactory                             | Understand and account for geochemical and biological changes |
| Do all this at reasonable cost                                        | All the above                                                 |

### Trinity Hydrogeologic Regions



(after Kelley, Nov 18, 2015)

## Hydrogeology



## Glenrose Thickness



#### Glenrose Transmissivity



### Hensell Thickness



#### Hensell Transmissivity



### Hosston Thickness



#### Hosston Transmissivity

TWDB GAM



#### Hosston Transmissivity

Clearwater Modified GAM



Specific Capacity in Public Supply Wells



## Hosston ASR Model Run

- ASR model run was performed using Hosston parameters
- Model run used a 5 well system over a 5 year period
- Injected initially from center well first for 2.5 years followed by injection/pumping cycle every 6 months



### Injection Example in Hosston



### Injection Example in Hosston



### **Relative Concentration in Center Well**



## Barton Springs Middle Trinity Pilot Study

- Inject Edwards water into Middle Trinity Aquifer
- 2-Phase pilot test has been successful
  - Hydraulically
  - Geochemically
- Well yield 220 gpm
- Specific capacity -1.3 gpd/ft
- Transmissivity 4,600 gpd/ft

## **ASR Development Phasing**

- 1. Desktop feasibility studies
- 2. Exploratory well program (or use existing wells)
- 3. Design of Pilot ASR system/permitting
- 4. Pilot construction
- 5. Operational testing of Pilot ASR
- 6. Expansion of ASR system
  - a. Design
  - b. Permitting
  - c. Construction
- 7. Operational optimization





#### LBG-GUYTON ASSOCIATES James Beach, P.G. jbeach@lbg-guyton.com

Austin San Antonio

Houston

