Have You Met My Water Management Friend ASR? An Introduction to Aquifer Storage and Recovery

> Aaron Collier, P.G. Vice President

aaron@collierconsulting.com (254) 396-3002

Introduction to ASR

Case Study of a Texas ASR Feasibility Study

Examples of ASR Studies in Florida

Texas Water Supply in a Nutshell

Aquifer Storage Recovery

Aquifer Storage Recovery

Why ASR?

- Provides larger volume / longer term storage of water resources
- Can use any source of water
- High rates of recovery (can be >90%)
- Allows for full utilization of take and pay contracts and/or water treatment facilities
- Flexibility in well siting / minimal real estate

Typical ASR Well Head

ER

ASR Applications Store and Recover Seasonal storage Long-term storage (water banking) Emergency use

 Physical Management of the Aquifer Restore groundwater levels
 Reduce land subsidence
 Prevent salt water intrusion
 Control contaminant plumes

Improve Water Quality

Operational ASR Well Fields (2009)

Early ASR in Texas

ASR Concerns

Malcolm Pirnie, et al., 2011

ASR Legislation

• HB 655

- TCEQ has exclusive jurisdiction (EAA, BSEACD, & Subsidence Districts are exempted)
- If ASR project produces more than authorized by TCEQ, then the well is subject to GCD rules
- Surface water right amendment is not needed to store appropriated surface water
- Eliminates the need for pilot projects
- Requires monthly reporting on injected/recovered volumes and annual water quality testing

Typical ASR Project Development

Phase 1 – Feasibility and Conceptual Design

Phase 2 – Initial Well and Testing Program

Phase 3 – Facilities Expansion

ASR Feasibility / Aquifer Selection Criteria

Reasons for Installation Source(s) of Water **Supply Variability Quality Variability Regulations** Hydrogeology

- Viability Assessment fatal flaw analysis using existing data
 - Availability of source water
 - Identify potential injection horizons
 - Hydrogeologic assessment of potential injection horizons
 - Review current contract(s)
 - Review current regulatory environment
 - Identify potential well sites

- Viability Assessment fatal flaw analysis using existing data
 - Availability of source water
 - Identify potential injection horizons
 - Hydrogeologic assessment of potential injection horizons
 - Review current contract(s)
 - Review current regulatory environment
 - Identify potential well sites

- Degree of Difficulty Assessment effort needed to achieve a successful ASR program and environmental and regulatory approvals
 - Geochemical modeling
 - Groundwater modeling
 - Initial cost estimates
 - Identifying any additional pre/post treatment

- Degree of Difficulty Assessment effort needed to achieve a successful ASR program and environmental and regulatory approvals
 - Geochemical modeling
 - Groundwater modeling
 - Initial cost estimates
 - Identifying any additional pre/post treatment

Phase 1 Feasibility: Source Water Variability

Phase 1 Feasibility: Source Water Variability

Phase 1 Feasibility: **Source Water Variability**

	Hypothetical streamflow cutoff for ASR operation (cu.ft./sec.)	Percent of purchased volume of water (28.6 MGD) available for ASR		
	≤ 1,000	10% (2.86 MGD)	15% (4.29 MGD)	20% (5.72 MGD)
	Number of Days > 1,000 cfs	Estimated cumulative volume of excess water available for ASR (gallons)		
2008-2014 (2291 days)	1,225 (53.5%)	3,504,453,333	5,256,680,000	7,008,906,667
2011-2014 (1195 days)	469 (39.2%)	1,340,386,667	2,010,580,000	2,680,773,333

- Will the recharge water be able to flow into the aquifer? Sufficiently permeable
- Will the aquifer have sufficient space to accept the water? Is the pressure system such that it will accept and store the water
- Will the water be recoverable?
 Can you recover it from the point of recharge; can you intercept it down hydraulic gradient?
 How long can it be stored and still be recoverable?

Phase 1 Feasibility: Groundwater Modeling

Phase 1 Feasibility: Geochemical Modeling

Shallow Aquifer

Confining Layer

POSSIBLE REACTIONS Dissolution of Aquifer Oxidation/Reduction Release of: Trace Elements Radionuclides Organic Carbon Ion-exchange Mercury methylation

Native Water POSSIBLE REACTIONS Bio-fouling Suspended Solids Clogging

Native Water

Phase 2 Initial Well and Testing Program

- Preliminary design of the ASR system well and surface facilities
- State and local permitting
- Drilling test wells and sample formations (cutting and/or cores)
- Obtain site specific hydraulic characteristics of the proposed ASR horizon and overlying and underlying confining units (seals) via pumping tests and geophysical techniques
- Laboratory analysis of source water and groundwater
- Cycle testing

Phase 2 Case Study: ASR In Support Of The Comprehensive Everglades Restoration Project

COMPREHENSIVE EVERGLADES RESTORATION PLAN

Case Study Location: SFWMD

Exploratory Drill / Test Sites Moore Haven ASR Test Monitor Well GLF-6

Full Diameter Coring

Petrophysical & Mineralogical Properties

WELL: MF-37 DEPTH: 1945.9 MAGNIFICATION: 40X

Good

Vuggy-Moldic

Restrictive Shallow Lagoon

Lithofacies: Peloid-Pellet-Dolopackstone

Depositional Environment: Porosity Amount: Dominant Porosity Type:

Other Constituents:

Aquifer Performance Testing

Integration of Geophysical & Petrophysical Data to Define ASR Horizon & Lateral Continuity

Marine Seismic Reflection Survey

Lake Okeechobee Seismic Line – Leg 2

A Successful ASR Project Provides:

- Larger volume / longer term storage of water resources
- High rates of recovery (can be >90%)
- Full utilization of take and pay contracts and/or water treatment facilities
- Flexibility in well siting / minimal real estate

Steps for a Successful ASR Project

Phase 1 – Feasibility and Conceptual Design

Phase 2 – Initial Well and Testing Program

Phase 3 – Facilities Expansion

QUESTIONS

www.collierconsulting.com (254) 968-8741

CONSULTING